Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 936168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927986

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease with significant mortality and frequent recurrence. Prior efforts to transcriptionally classify HNSCC into groups of varying prognoses have identified four accepted molecular subtypes of the disease: Atypical (AT), Basal (BA), Classical (CL), and Mesenchymal (MS). Here, we investigate the active enhancer landscapes of these subtypes using representative HNSCC cell lines and identify samples belonging to the AT subtype as having increased enhancer activity compared to the other 3 HNSCC subtypes. Cell lines belonging to the AT subtype are more resistant to enhancer-blocking bromodomain inhibitors (BETi). Examination of nascent transcripts reveals that both AT TCGA tumors and cell lines express higher levels of enhancer RNA (eRNA) transcripts for enhancers controlling BETi resistance pathways, such as lipid metabolism and MAPK signaling. Additionally, investigation of higher-order chromatin structure suggests more enhancer-promoter (E-P) contacts in the AT subtype, including on genes identified in the eRNA analysis. Consistently, known BETi resistance pathways are upregulated upon exposure to these inhibitors. Together, our results identify that the AT subtype of HNSCC is associated with higher enhancer activity, resistance to enhancer blockade, and increased signaling through pathways that could serve as future targets for sensitizing HNSCC to BET inhibition.

2.
Gut ; 71(5): 938-949, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34059508

RESUMO

OBJECTIVE: Enhancer aberrations are beginning to emerge as a key epigenetic feature of colorectal cancers (CRC), however, a comprehensive knowledge of chromatin state patterns in tumour progression, heterogeneity of these patterns and imparted therapeutic opportunities remain poorly described. DESIGN: We performed comprehensive epigenomic characterisation by mapping 222 chromatin profiles from 69 samples (33 colorectal adenocarcinomas, 4 adenomas, 21 matched normal tissues and 11 colon cancer cell lines) for six histone modification marks: H3K4me3 for Pol II-bound and CpG-rich promoters, H3K4me1 for poised enhancers, H3K27ac for enhancers and transcriptionally active promoters, H3K79me2 for transcribed regions, H3K27me3 for polycomb repressed regions and H3K9me3 for heterochromatin. RESULTS: We demonstrate that H3K27ac-marked active enhancer state could distinguish between different stages of CRC progression. By epigenomic editing, we present evidence that gains of tumour-specific enhancers for crucial oncogenes, such as ASCL2 and FZD10, was required for excessive proliferation. Consistently, combination of MEK plus bromodomain inhibition was found to have synergistic effects in CRC patient-derived xenograft models. Probing intertumour heterogeneity, we identified four distinct enhancer subtypes (EPIgenome-based Classification, EpiC), three of which correlate well with previously defined transcriptomic subtypes (consensus molecular subtypes, CMSs). Importantly, CMS2 can be divided into two EpiC subgroups with significant survival differences. Leveraging such correlation, we devised a combinatorial therapeutic strategy of enhancer-blocking bromodomain inhibitors with pathway-specific inhibitors (PARPi, EGFRi, TGFßi, mTORi and SRCi) for EpiC groups. CONCLUSION: Our data suggest that the dynamics of active enhancer underlies CRC progression and the patient-specific enhancer patterns can be leveraged for precision combination therapy.


Assuntos
Cromatina , Neoplasias Colorretais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos/genética , Humanos , Proteínas Nucleares , Fatores de Transcrição/genética
3.
Cell Rep ; 36(3): 109410, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289358

RESUMO

The dynamic evolution of chromatin state patterns during metastasis, their relationship with bona fide genetic drivers, and their therapeutic vulnerabilities are not completely understood. Combinatorial chromatin state profiling of 46 melanoma samples reveals an association of NRAS mutants with bivalent histone H3 lysine 27 trimethylation (H3K27me3) and Polycomb repressive complex 2. Reprogramming of bivalent domains during metastasis occurs on master transcription factors of a mesenchymal phenotype, including ZEB1, TWIST1, and CDH1. Resolution of bivalency using pharmacological inhibition of EZH2 decreases invasive capacity of melanoma cells and markedly reduces tumor burden in vivo, specifically in NRAS mutants. Coincident with bivalent reprogramming, the increased expression of pro-metastatic and melanocyte-specific cell-identity genes is associated with exceptionally wide H3K4me3 domains, suggesting a role for this epigenetic element. Overall, we demonstrate that reprogramming of bivalent and broad domains represents key epigenetic alterations in metastatic melanoma and that EZH2 plus MEK inhibition may provide a promising therapeutic strategy for NRAS mutant melanoma patients.


Assuntos
Cromatina/metabolismo , GTP Fosfo-Hidrolases/genética , Melanoma/genética , Proteínas de Membrana/genética , Mutação/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Histonas/metabolismo , Humanos , Melanócitos/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Metástase Neoplásica , Complexo Repressor Polycomb 2/metabolismo , Transcrição Gênica , Carga Tumoral
4.
Proc Natl Acad Sci U S A ; 112(27): 8338-43, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100909

RESUMO

Ribosome biogenesis dictates the translational capacity of cells. Several mechanisms establish and maintain transcriptional output from eukaryotic ribosomal DNA (rDNA) loci. rDNA silencing is one such mechanism that ensures the inactivity and hence the maintenance of a silenced state of a subset of rRNA gene copies. Whereas oncogenic agents stimulate rRNA gene transcription, tumor suppressors decrease rRNA gene transcription. We demonstrate in mammalian cells that BANP, E5R, and Nac1 (BEN) domain 3 (BEND3), a quadruple BEN domain-containing protein, localizes in nucleoli and binds to ribosomal RNA gene promoters to help repress rRNA genes. Loss of BEND3 increases histone H3K4 trimethylation and, correspondingly, decreases rDNA promoter DNA methylation, consistent with a role for BEND3 in rDNA silencing. BEND3 associates with the nucleolar-remodeling complex (NoRC), and SUMOylated BEND3 stabilizes NoRC component TTF-1-interacting protein 5 via association with ubiquitin specific protease 21 (USP21) debiquitinase. Our results provide mechanistic insights into how the novel rDNA transcription repressor BEND3 acts together with NoRC to actively coordinate the establishment of rDNA silencing.


Assuntos
Proteínas Cromossômicas não Histona/genética , DNA Ribossômico/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/genética , Ubiquitina Tiolesterase/genética , Western Blotting , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Microscopia de Fluorescência , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sumoilação , Ubiquitina Tiolesterase/metabolismo
5.
Arthritis Rheumatol ; 67(5): 1323-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25707573

RESUMO

OBJECTIVE: Persistent fibroblast activation underlies skin fibrosis in systemic sclerosis (SSc), but the transcriptional and epigenetic mechanisms controlling this process are not well understood. In view of the potent influence of acetylation status governing tissue fibrosis, we undertook this study to investigate the expression of the antiaging deacetylase enzyme sirtuin 1 (SIRT1) in SSc and its effects on fibrotic responses in vitro and in vivo. METHODS: Tissue expression of SIRTs was interrogated from publicly available genome-wide expression data sets and by immunohistochemistry. The effects of SIRT1 on modulating fibrotic responses, as well as the underlying mechanisms, were examined in human and mouse fibroblasts in culture and in an experimental fibrosis model in the mouse. RESULTS: Analysis of transcriptome data revealed a selective reduction of SIRT1 messenger RNA (mRNA) levels in SSc skin biopsy samples as well as a negative correlation of SIRT1 mRNA with the skin score. Cellular SIRT1 levels were suppressed in normal fibroblasts exposed to hypoxia or platelet-derived growth factor and were constitutively down-regulated in SSc fibroblasts. Activation of SIRT1 attenuated fibrotic responses in skin fibroblasts and skin organ cultures, while genetic or pharmacologic inhibition of SIRT1 had profibrotic effects. The antifibrotic effects of SIRT1 were due in part to decreased expression and function of the acetyltransferase p300. In mice, experimentally induced skin fibrosis was accompanied by reduced SIRT1 expression in lesional tissue fibroblasts, and both fibrosis and loss of SIRT1 in these mice were mitigated by treatment with a SIRT1 activator. CONCLUSION: SIRT1 has antifibrotic effects, and its reduced tissue expression in patients with SSc might have a direct causal role in progression of fibrosis. Pharmacologic modulation of SIRT1 in these patients therefore might represent a potential treatment strategy.


Assuntos
Fibroblastos/metabolismo , RNA Mensageiro/metabolismo , Escleroderma Sistêmico/genética , Sirtuína 1/genética , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição de p300-CBP/genética , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Humanos , Camundongos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Resveratrol , Escleroderma Sistêmico/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Pele/citologia , Proteínas Smad/metabolismo , Estilbenos/farmacologia , Fator de Crescimento Transformador beta/farmacologia , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...